Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Locusts exhibit remarkable phenotypic plasticity changing their appearance and behavior from solitary to gregarious when population density increases. These changes include morphological differences in the size and shape of brain regions, but little is known about plasticity within individual neurons and alterations in behavior not directly related to aggregation or swarming. We investigated looming escape behavior and the properties of a well-studied collision-detection neuron in gregarious and solitarious animals of three closely related species, the desert locust (Schistocerca gregaria), the Central American locust (S. piceifrons) and the American bird grasshopper (S. americana). For this neuron, the lobula giant movement detector (LGMD), we examined dendritic morphology, membrane properties, gene expression, and looming responses. Gregarious animals reliably jumped in response to looming stimuli, but surprisingly solitarious desert locusts did not produce escape jumps. These solitarious animals also had smaller LGMD dendrites. This is the first study done on three different species of grasshoppers to observe the effects of phenotypic plasticity on the jump escape behavior, physiology and transcriptomics of these animals. Unexpectedly, there were little differences in these properties between the two phases except for behavior. For the three species, gregarious animals jumped more than solitarious animals, but no significant differences were found between the two phases of animals in the electrophysiological and transcriptomics studies of the LGMD. Our results suggest that phase change impacts mainly the motor system and that the physiological properties of motor neurons need to be characterized to understand fully the variation in jump escape behavior across phases.more » « lessFree, publicly-accessible full text available December 9, 2026
-
Synapses are crucial structures that mediate signal transmission between neurons in complex neural circuits and display considerable morphological and electrophysiological heterogeneity. So far we still lack a high-throughput method to profile the molecular heterogeneity among individual synapses. In the present study, we develop a droplet-based single-cell (sc) total-RNA-sequencing platform, called Multiple-Annealing-and-Tailing-based Quantitative scRNA-seq in Droplets, for transcriptome profiling of individual neurites, primarily composed of synaptosomes. In the synaptosome transcriptome, or ‘synaptome’, profiling of both mouse and human brain samples, we detect subclusters among synaptosomes that are associated with neuronal subtypes and characterize the landscape of transcript splicing that occurs within synapses. We extend synaptome profiling to synaptopathy in an Alzheimer’s disease (AD) mouse model and discover AD-associated synaptic gene expression changes that cannot be detected by single-nucleus transcriptome profiling. Overall, our results show that this platform provides a high-throughput, single-synaptosome transcriptome profiling tool that will facilitate future discoveries in neuroscience.more » « less
-
We report a novel single-cell whole-genome amplification method (LCS-WGA) that can efficiently capture spontaneous DNA damage existing in single cells. We refer to these damage-associated single-nucleotide variants as “damSNVs,” and the whole-genome distribution of damSNVs as the damagenome. We observed that in single human neurons, the damagenome distribution was significantly correlated with three-dimensional genome structures. This nonuniform distribution indicates different degrees of DNA damage effects on different genes. Next, we identified the functionals that were significantly enriched in the high-damage genes. Similar functionals were also enriched in the differentially expressed genes (DEGs) detected by single-cell transcriptome of both Alzheimer’s disease (AD) and autism spectrum disorder (ASD). This result can be explained by the significant enrichment of high-damage genes in the DEGs of neurons for both AD and ASD. The discovery of high-damage genes sheds new lights on the important roles of DNA damage in human diseases and disorders.more » « less
-
ARID1A is one of the most frequently mutated epigenetic regulators in a wide spectrum of cancers. Recent studies have shown that ARID1A deficiency induces global changes in the epigenetic landscape of enhancers and promoters. These broad and complex effects make it challenging to identify the driving mechanisms of ARID1A deficiency in promoting cancer progression. Here, we identified the anti-senescence effect of Arid1a deficiency in the progression of pancreatic intraepithelial neoplasia (PanIN) by profiling the transcriptome of individual PanINs in a mouse model. In a human cell line model, we found that ARID1A deficiency upregulates the expression of aldehyde dehydrogenase 1 family member A1 ( ALDH1A1 ), which plays an essential role in attenuating the senescence induced by oncogenic KRAS through scavenging reactive oxygen species. As a subunit of the SWI/SNF chromatin remodeling complex, our ATAC sequencing data showed that ARID1A deficiency increases the accessibility of the enhancer region of ALDH1A1 . This study provides the first evidence that ARID1A deficiency promotes pancreatic tumorigenesis by attenuating KRAS -induced senescence through the upregulation of ALDH1A1 expression.more » « less
-
Abstract Droplet‐based single cell sequencing technologies, such as inDrop, Drop‐seq, and 10X Genomics, are catalyzing a revolution in the understanding of biology. Barcoding beads are key components for these technologies. What is limiting today are barcoding beads that are easy to fabricate, can efficiently deliver primers into drops, and thus achieve high detection efficiency. Here, this work reports an approach to fabricate dissolvable polyacrylamide beads, by crosslinking acrylamide with disulfide bridges that can be cleaved with dithiothreitol. The beads can be rapidly dissolved in drops and release DNA barcode primers. The dissolvable beads are easy to synthesize, and the primer cost for the beads is significantly lower than that for the previous barcoding beads. Furthermore, the dissolvable beads can be loaded into drops with >95% loading efficiency of a single bead per drop and the dissolution of beads does not influence reverse transcription or the polymerase chain reaction (PCR) in drops. Based on this approach, the dissolvable beads are used for single cell RNA and protein analysis.more » « less
An official website of the United States government
